An Abstract Model of Routing in Mobile Ad Hoc Networks
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Abstract. Modelling Mobile Ad Hoc Networks (MANETS) is a challenge because the topology
of such networks changes dynamically and unpredictably. We create a highly abstract Coloured
Petri Net model of routing in a MANET based on the Destination-Sequenced Distance-Vector
(DSDV) routing protocol. Our experiments show that this model can simulate the required
dynamic changes of network topology and reveal that incorrect routing information can be
created and propagated in the MANET.
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1 Introduction

A Mobile Ad Hoc Network (MANET) [1] is a collection of wireless mobile nodes, such as
laptops, mobile phones and Personal Digital Assistants (PDAs), which establish a temporary
network without the help of any pre-existing infrastructure or centralized administration.
Packet forwarding, routing, and other network operations are carried out by the individual
nodes themselves [18]. In addition, nodes freely join in and move out, which results in the
network topology constantly changing, so that conventional routing protocols do not work
well for MANETSs. Most current routing protocols designed for MANETS are still under
development [2]. So far their definitions are not mature enough for Internet standards and
they have mainly been evaluated by simulation and live testing. Unfortunately, simulation
and testing are not sufficient to verify that there are no subtle errors or design flaws left in a
protocol [28]. To achieve this goal we need to formally verify its operation. Formal verification
firstly requires the creation of a formal model of the system.

Concerning formal verification of routing protocols for MANETS, Bhargavan et al. [4]
and Obradovic [22] verify the Routing Information Protocol (RIP) [19] and the Ad-hoc On-
Demand Distance Vector (AODV) Routing Protocol [23]. They analysed AODV and identified
a flaw that could lead to a loop. This was done using SPIN [11] and the HOL Theorem Proving
System [10]. In order to realise loop free behaviour, a modification was suggested and verified.
Their approach verified the general case, but required a significant amount of user interaction.
Wibling et al. [28] consider an automatic verification strategy, and use two model checking
tools, SPIN and UPPAAL [17], to verify both the data and control aspects of the Lightweight
Underlay Network Ad hoc Routing (LUNAR) protocol. However, they just studied a limited
set of topologies.

The purpose of this paper is to illustrate the dynamic operations of a MANET using
Coloured Petri Nets (CPNs) [13, 14]. However, it is not easy to create a CPN model of a
MANET because the topology of such a network changes dynamically and unpredictably.
Only a few attempts have been made to model a highly dynamic system topologies using
CPNs. Findlow and Billington [7] used High-Level Petri Nets [5] to model dynamic dining



philosophers, where philosophers can come and go unpredictably. The topology of the system
is circular, but arbitrarily expanding and contracting as philosophers come and go and can take
different positions in the circle. In MANETS there is no regular structure but an arbitrarily
changing network topology.

Xiong et al. [29] present a timed CPN model for AODV. They considered that it was too
difficult to model the highly dynamic topology of MANETSs with CPNs directly and proposed
a topology approximation (TA). They assume that every node has the same transmission
range and thus that the neighbourhood relation is symmetric. They also assume that each
node in the MANET has the same number of neighbours, a rather unrealistic assumption.
Further, in simulation experiments, the number of neighbours needs to be supplied by the
analyst.

Kristensen and Jensen [15] model and analyse the Edge Router Discovery Protocol (ERDP),
a protocol for connecting gateways in MANETS to edge routers in fixed networks. Thus their
CPN model does not involve the dynamically changing topology of MANETSs. Kristensen et
al [16] use hierarchical CPNs to model a fixed number (in their case 4) of MANETSs which
communicate with each other via an IPv6 network. Nodes can join and leave a particular
MANET and can move from one MANET to another. The topology of a MANET is de-
scribed explicitly by storing pairs of nodes, where each pair represents a one directional link.
The model includes simple forwarding of user packets directly from the source node to the
destination node, irrespective of which MANET they belong to. The model thus abstracts
from the mechanism by which these packets are forwarded through different nodes of the var-
ious MANETS to their destination, which we believe is a key part of MANET design. Thus
no attempt is made to model a routing protocol or how the packets are routed in the network.

In this paper, we consider the Destination-Sequenced Distance-Vector (DSDV) routing
protocol [24,25], because DSDV has relatively low complexity compared with many other ad
hoc routing protocols. DSDV is a representative proactive protocol. The primary characteristic
of such a routing approach is that each node tries to maintain a route to every other node
in the network at all times. It has the advantage that there is no delay to begin a session,
and tends to perform well in networks where there are a significant number of data sessions
within the network [2].

The main aim of this paper is to provide the first CPN model of the basic functions of
the DSDV routing protocol as a fisrt step towards its formal specification and verification.
We introduce the basic features of DSDV and then provide an abstract CPN model of the
DSDV routing mechanism. We perform some simulation experiments to demonstrate the way
the model captures the dynamic changes in network topology. In doing so, we uncover some
interesting errors and suggest modifications to the procedures to eliminate these errors.

There are several contributions of this paper. Firstly, we demonstrate that CPNs can
model the dynamically changing network topologies associated with MANETS in an elegant
and simple way, without using the assumptions made in [29] and without requiring the rela-
tively complex 4-level hierarchical structure used in [16]. Secondly, we provide the first CPN
model of the DSDV routing procedures and discover two errors in these procedures. This pro-
vides the first analysis of the key component of DSDV, the use of sequence numbers to discard
old information. Thirdly we discuss modifications to the DSDV procedures for updating rout-
ing tables that we believe will remove these errors. These modifications are implemented
in a revised CPN model and our simulations have shown that they have been effective in
eliminating these errors in the scenarios run so far.

The rest of the paper is organised as follows. Section 2 gives an introduction to DSDV
and explains the basic operations of the protocol. In Section 3, we describe a highly abstract



CPN model of the DSDV protocol. Simulation experiments are conducted in Section 4, and
discussed in Section 5. Finally, conclusions and future work are presented in Section 6.

2 Destination-Sequenced Distance-Vector Routing Protocol

2.1 Background

The destination-sequenced distance-vector routing protocol is derived from distance-vector
routing algorithms [20]. Such algorithms are often referred as the Distributed Bellman-Ford
(DBF) algorithm since they are based on a shortest path computation algorithm presented
by Bellman [3]. The first description of the distributed algorithm was given by Ford and
Fulkerson [8]. This algorithm was the original Arpanet routing algorithm, and was also used in
the Internet under the name RIP and in early versions of DECnet and Novell’s Internet Packet
eXchange (IPX). AppleTalk and Cisco routers use improved distance vector protocols [26].
The distance vector algorithm can cause the formation of both short-lived and long-lived
loops [6]. The main cause of the formation of routing loops is that nodes choose their next
hops in a completely distributed fashion based on information that may be stale and therefore
incorrect. The modifications [9, 12, 21] designed to eliminate the looping problem are not
feasible in MANETS because of the rapidly changing topology of such a network [25].

RIP [19] is a simple and practical distance vector protocol. It is easy to understand and
modify. However, like other distance-vector algorithms, RIP also suffers from very slow con-
vergence (the counting to infinity problem [26]). Despite this problem, without the ability to
handle rapid topological changes, the usefulness of RIP in MANET is limited [25]. Further-
more, the techniques designed in [19] to solve counting to infinity are not useful within the
wireless environment. For these reasons, in 1994 C. E. Perkins and P. Bhagwat [24] presented
the destination-sequenced distance-vector routing protocol for ad hoc networks. In 2001, a
more comprehensive protocol specification was given by Perkins [25], and a recent description
by Royer can be found in [2]. This protocol preserves the simplicity of RIP and avoids the
looping problem by using sequence numbers. The sequence number is attached to each route
entry in the routing tables stored in nodes, so they can quickly distinguish stale routes from
new ones, and thus avoid formation of routing loops. A brief introduction to the basic rout-
ing algorithm of DSDV is given in the next subsection mainly based on [25]. The purpose is
not to give a complete description of DSDV, but to provide sufficient information to under-
stand the CPN model in the next section. In this model, we relax the assumption that links
are bidirectional [25], because asymmetries of transmission ranges are prevalent in a wireless
environment.

2.2 Protocol Overview

In DSDV, every mobile node maintains a route to every other node (i.e. destination) in the
network. Thus its routing table comprises a list of route entries. A route entry corresponding
to a destination contains the following attributes:

Destination: IP address of the destination;

— Nexthop: IP address of next node along the route to the destination;
— Metric: the number of nodes (hops) required to reach the destination;
— SeqNr: last recorded sequence number for the destination;

— Installtime: the time when this route entry is received.



The purpose of sequence numbers is to track changes in topology. Each node keeps its own
sequence number, which is increased whenever important changes are made to its routing
table. When a route entry to a destination is established, it is stamped with the current
sequence number of this destination. As the topology of the network changes, more recent
route entries have higher sequence numbers, so that nodes can distinguish between current
and stale route entries by comparing the sequence numbers of these entries. In order to keep
routing tables consistent in a dynamically changing topology, each node periodically transmits
updates using a full dump packet, and transmits an incremental update immediately after a
significant change to its routing table. These updates comprise a list of triples of the form:
(Destination, Metric, SeqNr), derived directly from the routing table of a node. A full
dump comprises a list of triples where each triple corresponds to an entry in the routing
table. An incremental update only carries triples that have changed since the last full dump.
Each node may receive routing information sent by another node. It utilizes this information
to recompute its routing table entries. For every triple received, the node firstly checks its own
routing table to find whether or not an entry to the same destination exists. If such an entry
does not exist, the node adds this route entry received to its table after: incrementing the
metric of this entry by one hop; adding the sender as the next hop; and including the current
sequence number of this destination. If such an entry exists, the node will choose the entry
with the higher sequence number. If two entries have the same sequence number, the entry
with the shorter metric will be chosen. These two situations can guarantee loop-free paths
to each destination in DSDV (A proof of correctness of this point is given in [25]). Nodes in
a MANET may cause broken links as they move from place to place. A broken link may be
inferred by a node if no message has been received for a while (e.g. one time interval of the
periodic broadcast) from a former neighbour. The metric of a broken link is represented by
00. When a link to the next hop is broken, any route through this next hop is immediately
assigned an oo metric, and its sequence number is increased by 1 [25].
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Fig. 1. The neighbourhood relation between the nodes in a MANET

In the context of mobile ad hoc networking, each node can communicate directly with any
other node within its transmission range. If the node wants to communicate with nodes which
reside beyond this range, intermediate nodes between them are used to relay the messages.
We consider that node A is a neighbour of node B if node A is within node B’s transmission
range. In a realistic environment, mobile hosts have different software/hardware configurations
and different radio interfaces [18], which can lead to variability in their transmission ranges.
Consider the example of a MANET comprising 3 nodes (node 1, node 2 and node 3) shown
in Fig. 1. In this figure, the full circles represent nodes, and the dotted circles represent
transmission ranges of the nodes. The number positioned in each of the small circles represents



the node’s identity (i.e. IP address). Fig. 1 shows 2 snapshots of the network as time increases
and the nodes move in the network. As shown in Fig. 1(a), node 1 and node 3 are neighbours
of each other. Node 2 is not a neighbour of node 1 or node 3, because it is not within
the transmission range of either node. Similarly, node 2 has no neighbours because no other
nodes are in its range. Within a MANET, each node can move at will, changing its neighbours
arbitrarily. Thus in Fig. 1(b), node 1 is now a neighbour of node 2, node 2 and node 3 are
neighbours of each other, but node 2 is not a neighbour of node 1. Therefore in a highly
dynamic MANET the neighbourhood relation may not be symmetric. In previous work, the
general assumption has been made that every node has identical capability and responsibility,
so that a MANET is fully symmetric [4,25,29]. However, a key objective of our research is to
precisely mimic the dynamic nature of a MANET, and thus we do not make this assumption.

In [25], many parameters which control the behaviour of DSDV, such as the frequency of
broadcast, the frequency of full dumps versus incremental updates and the percentage change
in the routing metric which can trigger an incremental update are not given. Moreover, when
and how each node updates its sequence number in DSDV are not described explicitly. There
is also not any description of the initial state in the DSDV process. Therefore, in order to
illustrate the behaviour of DSDV completely and unambiguously, we need to make some
assumptions. According to the example presented in [25], there is a route entry to itself in
the routing table of each node. For our modelling and analysis, we assume that each node
initially only has the route entry to itself in its routing table with its sequence number set
to 0. The node increases its sequence number by 2 whenever there is a significant change to
its routing table. Then this node broadcasts the triples associated with the changed route
entries immediately. This assumption is indeed safe for DSDV because it satisfies the need of
DSDV: more recent route entries should have higher sequence numbers in the routing table.
Meanwhile, it does not influence the routing algorithm of DSDV in [25]. To simplify the
problem, we ignore the install time of each route entry.
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Fig. 2. An example of DSDV in operation (1) route advertisements

An example of DSDV in operation with unidirectional links is depicted in Fig. 2. In this
figure, the solid arrows indicate that the sender broadcasts a full dump to its neighbours,
and the dashed arrows indicate that the sender broadcasts an incremental update. In order



Table 1. Initial routing tables of nodes 1, 2 and 3

Dest.|Next|Met.|SeqNr||Dest.|Next|Met.|SeqNr||Dest.|Next |Met.|SeqNr
T 1 o |[Lolz 2 [0 [&ol3 3B [0 |30

Table 2. Routing tables of nodes 1, 2 and 3 in Fig. 2(a)
Dest.|Next|Met.|SeqNr
2 2 0 |22
3 3 1 (3,0)

Dest.|Next|Met.|SeqNr
1 1 0 (1, 0)

Dest.|Next|Met.|SeqNr
3 3 0 (3, 0)

Table 3. Routing tables of nodes 1, 2 and 3 in Fig. 2(b) and (c)

Dest.|Next|Met.|SeqNr||Dest.|Next|Met.|SeqNr
2 2 0 @&yl [ [T &2
3 3 [T |GolB B [0 (32

Dest.|Next|Met.|SeqNr
1 1 0 (1, 0)

Table 4. Routing tables of nodes 1, 2 and 3 in Fig. 2(d) and (e)
Dest.|Next|Met.|SeqNr

Dest.|Next|Met.|SeqNr

Dest. |Next|Met.|SeqNr| |1 1 1 (1, 0)
2 2 1 @2
I 0 [0l 2 0 95— % E3 2;
3 3 [T (30 ’

Table 5. Routing tables of nodes 1, 2 and 3 in Fig. 2(f)

Dest.|Next|Met.|SeqNr||Dest.|Next|Met.|SeqNr Dest.[Next| Mot |SeqNr
(S N (O (€PN | EX N N (MR} | = s Z.2)
2 2 1 @9l 2 0 9|51 (3’ 2
3 2 2 (3,0) |3 3 1 (3, 0) ’

Table 6. Routing tables of nodes 1 and 2 corresponding to Fig. 3

Dest.|Next|Met.|SeqNr||Dest.|Next|Met.|SeqNr
T [T 0 |[Lalt [T 1 G2
2 2 [T |62 |2 [0 |26
3 2 co [(3,1) |3 3 oo (3, 1)
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(a)2: infers a broken link (b)2: incremental; 1: receives (c) 1: incremental, no nodes receive

Fig. 3. An example of DSDV in operation (2) link breakage




to keep the figure succinct, the transmission ranges of the nodes are not given in Fig. 2. If
a node receives the routing information sent by another node that means the receiver is a
neighbour of the sender, i.e. it is in the range of the sender.

Fig. 2 shows possible route advertisements of 3 nodes running DSDV in a MANET from
the initial state as time increases. These advertisements include a full dump of each node and
consequential incremental updates. The initial routing tables of 3 nodes are shown in Table 1.
(To save space, 1 is used for node 1, 2 for node 2 and 3 for node 3.) In the table, (1, 1, 0, (1,
0)) means that node 1 has a routing table comprising one route entry to itself, in which the
destination and the next hop both are node 1, the number of hops is 0 and its initial sequence
number is set to 0, represented as (1, 0).

We assume that node 3 is the first to broadcast its full dump (3, 0, (3, 0)) within the
MANET. Only node 2 receives this information as indicated in Fig. 2(a). Node 2 updates its
routing table based on this information. It adds the new entry for node 3 to its routing table,
after increasing the metric of this entry by 1 and adding node 3 as the next hop of this entry.
After that, it increases its own sequence number to 2. The updated routing tables of the nodes
are given in Table 2. As shown in Fig. 2(b), node 2 immediately broadcasts an incremental
update, ((2, 0, (2, 2)), (3, 1, (3, 0))). Node 3 receives this information and updates its routing
table in a similar way, adding a new route entry for node 2 to its routing table, and increases
its sequence number to 2, as shown in Table 3. In Fig. 2(c), node 3 broadcasts an incremental
update, ((2, 1, (2, 2)), (3, 0, (3, 2))), but no other nodes receive it, because node 2 is out of
the range of node 3. Now, node 1 originates its full dump broadcasting (1, 0, (1, 0)) which
node 2 receives, as shown in Fig. 2(d). Node 2 updates its routing table as shown in Table 4.
In Fig. 2(e), node 2 broadcasts an incremental update ((1, 1, (1, 0)), (2, 0, (2, 4))), but no
others receive it. Now in Fig. 2(f), node 2 originates its full dump and transmits ((1, 1, (1,
0)), (2,0, (2, 4)), (3,1, (3, 0))), and node 1 receives this information. Node 1 keeps the entry
to itself unchanged because of the identical sequence number (. It adds the entries for node 2
and node 3 to its routing table respectively, and it increases its sequence number by 2. Then
node 1 broadcasts an incremental update ((1, 1, (1, 2)), (2, 1, (2, 4)), (3, 2, (3, 0))) while node
2 receives it (to save space, also shown in Fig. 2(f)). Node 2 only updates the route entry
for node 1 as (1, 1, (1, 2)), and keeps the other entries unchanged because there is no new
information received, so it does not broadcast any incremental update. The modified routing
tables are shown in Table 5.

An example that illustrates how a node deals with a broken link is given in Fig. 3. Assume
the routing tables of nodes 1 and 2 are the same as those in Table 5. Consider node 2 finds
that it has not received a broadcast from node 3 for a while (e.g. a periodic interval), as shown
in Fig. 3(a). It infers the link between them is broken. Hence, node 2 assigns the metric of
this link to oo and increases the sequence number by 1. Then it increases its own sequence
number by 2 and immediately broadcasts an incremeantal update ((2, 0, (2, 6)), (3, oo, (3,
1))), while node 1 receives it in Fig. 3(b) (note: at this moment, the routing table of node 1
is the same as that in Table 5, while the routing table of node 2 is shown in Table 6). Node
1 updates the route entry for node 2 to the received sequence number 6. For the route entry
for node 3, node 1 selects the one received since it has the higher sequence number. Because
this is a broken link, node 1 increases its own sequence number by 2. The modified routing
table of node 1 is shown in Table 6. Then node 1 immediately broadcasts an incremental
update ((1, 0, (1, 4)), (2, 1, (2, 6)), (3, o0, (3, 1))) and no other nodes receive it, as shown in
Fig. 3(c). So routing tables of node 1 and node 2 are the same as those in Table 6.



3 Abstract CPN Model of a MANET based on DSDV

3.1 Design Rationale

The intent of our CPN model is to show that CPNs can be used for the modelling of routing
protocols in a MANET environment where arbitrary changes of network topology are possible.
We therefore start by modelling the basic operation of the routing protocol: nodes discover
other nodes by receiving broadcast messages and update their routing tables accordingly; and
nodes discover that previously established links are no longer valid, and mark them as broken
in their routing tables.

We do not model the routing messages explicitly. Instead we just consider events where
the information from the message is received and processed. We assume that this cannot
occur simultaneously in different nodes, i.e. no two nodes receive and process the broadcast
at exactly the same time. Instead, these events are interleaved in the different nodes. Further,
because of arbitrary movements of the nodes, there is no synchronisation between different
nodes for a broadcast. Hence the broadcast by node A may be received by: no nodes (corre-
sponding to A being an isolated node); one node (all other nodes are out of range); or any
number of nodes. The interpretation is that all nodes that have updated their routing tables
are in range at that time. Conversely, all nodes that have not updated their routing tables
are not in range at that time. Moreover, a lost message has the same effect as being out of
range. With this understanding, we model the updating of routing tables in the MANET
non-deterministically. Thus updating a routing table is considered an arbitrary event.

Further, we model broken links in a similar way. Because a functional model abstracts
from time, we consider that a broken link can be interleaved with any other event and is thus
modelled by an arbitrary event. Hence it is possible for a node to receive a full dump from
a neighbour and then to declare the link down as the next event. This could correspond to
the node leaving the MANET and other nodes becoming dispersed so that they are all out of
range.

We believe this captures the asymmetry between nodes and their arbitrary movement
realistically at a high-level of abstraction. Because the functional model abstracts from prob-
abilities, it includes many situations that would be considered rare events.

3.2 CPN Model

A CPN diagram of the MANET routing protocol, based on DSDV, is given in Fig. 4. The
purpose of the CPN is to model how nodes update their routing tables and deal with broken
links. Thus we model the nodes in the MANET by just their identity and their routing table.
The nodes are stored in the only place in the CPN, Nodes. This place is typed by the colour
set MNode as shown in line 13 in Fig. 5. MNode is a product of its identity, Nodeld, which
corresponds to its address, and its routing table, RT. The routing table is represented as a list
of route entries, one for each destination.When ignoring the install time, the route entry is a
4-tuple comprising the destination, nexthop, metric and its sequence number.The destination
and nexthop are node addresses, represented by the Nodeld. We represent the Nodeld as a
positive integer up to the maximum number of nodes in the MANET (see line 4 in Fig. 5).
The metric field is a little more interesting. It is normally the hopcount, the number of nodes
that need to be traversed to reach the destination. This can be represented as a non-negative
integer. However, when a link with a neighbour is considered to be down, the metric that is
used is 0o. Thus the metric is a union of the hopcount and oo (represented as infinity) as seen
in line 7 in Fig. 5. The sequence number can also be represented as a non-negative integer.
In Fig. 5, SeqNr is a product set, including the identity of the destination originating the



sequence number, and the value of this sequence number. This corresponds to its description
in DSDV.

1'(1,[(1,1,hops 0,(1,0))])++
1'(2,[(2,2,hops 0,(2,0))])++
1(3,[(8,3,hops 0,(3,0))])

(

1‘snode++1‘rnode

T

Update Table

MNode 1‘UpdateNode(rnode, snode)++1‘snode
1‘node

1‘BrokenLink(node, i)

| 4

Broken Link

[neighbour(node,i)]

Fig. 4. CPN Model of a MANET

We consider a configuration of 3 nodes in the MANET for our initial experiments (see
line 1 of Fig. 5). Nodes is thus initially marked by 3 nodes (1, 2 and 3), where each routing
table just has a single entry to itself. This corresponds to Table 1.

In line 2 of Fig. 5, UpdateSeq is an ML reference variable [27]. It is used as a flag to indicate
if a sequence number is to be updated by the functions described later in this section.

val MaxNodes = 3;
val UpdateSeqNr = ref false;

color NodeId = int with 1..MaxNodes;

color Destination = Nodeld;

color Nexthop = Nodeld;

color Metric = union hops:Hopcount + infinity declare of_hops;
color Hopcount = int;

color Number = int;

color SeqNr = product Destination * Number;

color RTEntry = product Destination * Nexthop * Metric * SegNr;
12 color RT = list RTEntry;

13 color MNode = product NodeId * RT;

14

15 var i: Nodeld;

16 var snode, rnode, node: MNode;

O 00 ~NO O WN =

=
= O

Fig. 5. Global declarations of the CPN model

Transition Update Table models the process of a node updating its routing table based
on the information it receives from another node. The arc inscription from place Nodes to
this transition has two variables, snode and rnode, which represent two arbitrary nodes in
the MANET. In our model, rnode receives the routing information broadcast by snode. The
arc inscription from Update Table to the place Nodes includes a function, UpdateNode(rnode,
snode). This function returns the updated routing table of rnode, while snode’s routing table
is maintained unchanged when Update Table occurs. This is where we abstract from the



DSDV protocol mechanisms. We interpret the occurrence of Update Table to mean that any
node, rnode, can update its table, based on the information from another node, snode, at
any time. Thus if Update Table occurs, rnode must have been within the transmission range
of snode. If Update Table does not occur, then either the update was not sent by snode
or when snode broadcasts the update rnode was out of its transmission range. Update Table
conceptually implements both full dump and incremental updates, as the information that is in
the incremental update is the only information that has any affect when updating the routing
table. So although clearly the full information is available, because only the incremental
information is used, the incremental update is modelled. This is the case because we do not
model the messages explicitly. So at our level of abstraction the two mechanisms are not
distinguishable. However, when a certain scenario is created by executing transitions, then it
can be interpreted as incremental or full dump as is appropriate.

Transition Broken Link models a node detecting that it has not received an update from
another node within the expected time, and updating its routing table accordingly. This can
occur for any node and for any one of its neighbours. On the occurrence of Broken Link, a node
(bound to the variable node) and one of its neighbours (4) are chosen arbitrarily. The guard
neighbour(node,i) ensures that the destination in the route entry of node that corresponds to
i does have a metric (hopcount) of 1 (which indicates that it is a neighbour). The function
BrokenLink(node,i) updates node’s routing table accordingly.

After Broken Link occurs, DSDV requires that an incremental update is broadcast. This
broadcast may or may not be received by the nodes in the MANET. If no node receives
the broadcast, then conceptually this is modelled by Update Table not occurring with snode
bound to the node that has just updated its table for the broken link. On the other hand if a
node does receive the incremental broadcast, then this is modelled by Update Table occurring
with that node binding to variable rnode, and the node that is broadcasting, binding to
snode. The effect of the function UpdateNode is the same whether or not it is a full dump or
an incremental update. Thus transition Update Table represents the behaviour of updating a
node’s routing table, irrespective of whether it receives a full dump or an incremental update.

3.3 Functions for Update Table

All functions needed for updating the routing table of a node are described in this subsection
(see Listing 1.1 and Listing 1.2). The main function is UpdateNode(rnode, snode) shown in
lines 1-9 of Listing 1.1. By this function, a node, rnode, updates its routing table (including
its own sequence number) based on the routing information sent by another node, snode.
This function contains a local declaration, Let/in/end. Using it, one value declaration binds
a value returned by UpdateSeqNr, a ref-variable with initial value false (see line 3), and the
other one binds a value returned by the function, UpdateRT() (see lines 1-34 in Listing 1.2),
to an identifier variable updated. In line 6, the value of UpdateSeqNr is checked. If it is
true, the sequence number of rnode is increased by 2 using function UpdateOwnRT() (see
lines 17-20 in Listing 1.1). Then the updated routing table with the node’s ID (obtained from
function GetNodeld(), see lines 11-12) is returned (see line 7). Otherwise, rnode’s identity and
the value contained in updated (in lines 4-5) is returned directly (see line 8). The function
UpdateNode(rnode, snode) involves the whole procedure of updating the routing table of rnode,
using two steps as follows.

1. First Step: the rnode updates its routing table based on the routing information broad-
cast by snode. This step is realised by function UpdateRT().

2. Second Step: the rnode determines whether or not to increase its own sequence number.
This step is done by checking the value of UpdateSeqNr.

10



Listing 1.1. Function UpdateNode

1 (*——rnode updates its routing table based on information broadcast by snode—=x)
2 fun UpdateNode (rnode,snode)=

3 let val _ = (UpdateSeqNr:=false)

4 val updated = UpdateRT (GetNodeId (rnode),GetRTNode (rnode),

5 GetNodeId (snode) ,GetRTNode (snode))

6 in if (!UpdateSeqNr)

7 then (GetNodeId(rnode),UpdateOwnRT (updated))

8 else (GetNodeId(rnode),updated)

9 end;

11 (*——to get a node’s identity —x)
12 fun GetNodeId(n,rt)= n;

14 (*——to get a node’s routing table—=x)

15 fun GetRTNode (n,rt)= rt;

16

17 (¥*——to update a node’s own sequence number—x)

18 fun UpdateOwnRT (n,rte::rt)= if OwnRTEntry(n,rte)

19 then (IncreaseSeqNr (rte))::rt
20 else rte::UpdateQwnRT (n,rt);
21

22 (*—to find the route entry to the node itself —x)

23 fun OwnRTEntry (n,(desl,nextl,metrl,seqnrl)) = (n = desl);
24

25 (¥—to increase the value of sequence number by 2——x)

26 fun IncreaseSeqNr (desl ,nextl,metrl,(des2,numl))= (desl,nextl,metrl,(des2,numl+2));

Now, we focus on the operations in the first step. Functions designed for this step are shown
in Listing 1.2. In lines 36-41, function AddRouteEntry() realises adding new route entries. In
line 44, the function hopnumbers() returns an integer value that is of type Hopcount from the
union type Metric (see line 7 in Fig. 5). In line 47, function add1() increments the metric that
is of type Hopcount by 1. As shown in lines 1-34, the main function UpdateRT() involves the
whole procedure of updating the routing table of a node based on the information sent by
another node. The node compares each route entry in this information with the corresponding
one in its routing table. To give some insight into the operation of this function we illustrate
the procedure for updating a route entry in Fig. 6. This is then applied recursively for each
route entry (see lines 5-34 of Listing 1.2). For convenience, in our model, all route entries are
listed in ascending order of the destination’s node identifier (address), to simply the procedure.
This has the added benefit reducing state space explosion that would otherwise occur due to
arbitrary ordering of the list.

As shown in Fig. 6, the receiver is represented as (mnid, [(md, mn, mm, (mdl, mseq)) :
mrt]), in which mnid represents the node identity and (md, mn, mm, (mdl, mseq)) represents
the route entry (also represented as entryl), currently listed in the first position in its routing
table. The rest of the route entries are represented by mrt. Similarly, the sender is represented
as (n,[(nd,nn,nm, (ndl,nseq)) = rt]). Its identity is n, and the route entry listed in the
first position in its routing table is (nd, nn,nm, (ndl,nseq)) (also represented as entry2).
The metrics of entryl and entry2 are represented as mm and nm respectively. In Fig. 6,
mm:int or nm:int means that the metric is of type Hopcount, i.e. an integer. mm:in finity
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Listing 1.2. Function UpdateRT

1 (*——a node updates its route entries based on another node ——x)
2 fun UpdateRT (mnid,[],n,[]1)= []

3 | UpdateRT (mnid,[],n,rte::rt)=(UpdateSeqNr :=true; AddRouteEntry (mnid,n,rte::rt))
4 | UpdateRT (mnid ,mrte::mrt,n,[])= mrte::mrt

5 | UpdateRT (mnid,(md,mn,mm,(mdl,mseq))::mrt,n,(nd,nn,nm,(ndl,nseq))::rt)=

6 i1f md=nd

7 then

8 if (mseq>nseq)

9 then (md ,mn ,mm, (md1 ,mseq))::UpdateRT (mnid ,mrt ,n,rt)

10 else

11 if (mseq=nseq)

12 then case (of_hops’Metric(mm)) of

13 (true) =>if (hopnumbers (mm) <= hopnumbers (nm))

14 then (md,mn,mm,(mdl,mseq))::UpdateRT (mnid ,mrt ,n,rt)

15 else (UpdateSeqNr :=true;(nd,n,addl (nm),(ndl,nseq))::UpdateRT (mnid ,mrt ,n,rt))
16 |(false)=>(md,mn,mm, (mdl,mseq))::UpdateRT (mnid ,mrt,n,rt)

17 else case ((of_hops’Metric(mm)),(of_hops’Metric(nm))) of

18 ((true),(true))=>if (mm = addil(nm))

19 then (nd,n,addl(nm),(ndl,nseq))::UpdateRT (mnid ,mrt,n,rt)

20 else (UpdateSeqNr :=true;(nd,n,addl(nm),(ndl,nseq))

21 ::UpdateRT (mnid ,mrt ,n,rt))

22 | ((true),(false)) => (UpdateSeqNr:=true;(nd,n,nm,(ndl,nseq))::UpdateRT (mnid ,mrt ,n,rt))
23 | ((false),(true)) => (UpdateSeqNr:=true;(nd,n,addl(nm),(ndl,nseq))

24 ::UpdateRT (mnid ,mrt ,n,rt))

25 | ((false),(false))=> (nd,n,nm,(ndl,nseq))::UpdateRT (mnid ,mrt,n,rt)

26 else

27 if md <nd

28 then (md ,mn ,mm, (md1 ,mseq))::UpdateRT (mnid ,mrt ,n, (nd,nn,nm, (ndl ,nseq))::rt)
29 else

30 if of _hops ’Metric (nm)

31 then (UpdateSeqNr :=true;(nd,n,addl (nm), (ndl,nseq))

32 ::UpdateRT (mnid , (md ,mn ,mm, (md1 ,mseq))::mrt,n,rt))

33 else (UpdateSeqNr :=true;(nd,n,nm,(ndl,nseq))

34 ::UpdateRT (mnid , (md ,mn ,mm, (mdl ,mseq))::mrt,n,rt));

35

36 (*—a node with identity m adds new route entries based on another node—=x)
37 fun AddRouteEntry (m,n,[])=[]

38 | AddRouteEntry (m,n,(desl,nexthopl ,metricl,seqnrl)::rtm)=
39 if of_hops’Metric(metricl)

40 then (desl,n,addl (metricl),seqnrl)::AddRouteEntry (m,n,rtm)
41 else (desl,n,metricl,seqnrl)::AddRouteEntry (m,n,rtm);

42

43 (*—to get the value of the metric—=)

44 fun hopnumbers (hops metr) = metr;

45

46 (*—to increase the metric by 1——=x)

47 fun addl (hops metr)= let val M = metr+1
48 in hops M
49 end;
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(mnid,[(md, mn, mm, (md1, mseq))::mrt]) vs. (n,[(nd, nn, nm, (nd1,nseq))::rt])

¢

(md vs. nd)
I
\L md=nd \L md<nd l/ md> nd
(mseq vs.nseq) entryl entry2
\L mseq=nseq \L mseq>nseq l/ mseq<nseq nm:int i 1/ nminfinity
(mm=?,nm=?) entryl (mm=?,nm=?) LA LA
|
mm:int mm:infinity i(l) ¢(2) \L(S) J/(4)
(mm,nm) entryl entry2  entry2 entry2  entry2
LB LA

mm<=nm mm>nm

entry|l entry2

entryl : (md, mn, mm, (md1, mseq)) entry2 : (nd, nn, nm, (nd1,nseq))
(1)(mm: int, nm: int);  (2)(mm: int, nm: infinity); (3)(mm: infinity, nm: int); (4)(mm: infinity, nm: infinity);
LA: Link Addition; LB: Link Broken.

Fig. 6. Procedure for updating a route entry

or nm:infinity means that the metric is oo (represented as infinity in Fig. 6), namely the
corresponding entry is a broken link. The purpose of UpdateSeqNr is to track changes to
the routing table of the receiver during updating. The value of UpdateSeqNr is set to true,
whenever an important change happens, such as a link addition (LA), a link breakage (LB)
or metric change, as shown in Fig. 6. In Fig. 6, if entryl occurs under an arrow, it means
the receiver does not change its route entry. Otherwise, the route entry sent by the sender,
entry?2, is used to update the receiver’s route entry. In this case, if the metric of entry2 is
of type Hopcount, the receiver increases this metric by 1 by function addl(), and includes
the sender’s node identifier as the next hop of the entry. If the metric is oo, the receiver
just adds this entry without any change. Now, a comparison between two route entries,
(md, mn, mm, (mdl, mseq)) and (nd, nn,nm, (ndl,nseq)), is described as follows.

1. If two entries are to the same destination, md = nd (see lines 6-25 in Listing 1.2). The
receiver then compares their sequence numbers, mseq and nseq. If mseq > nseq, the
receiver will choose entryl. If mseq = nseq, that means the two metrics are of the same
type. Thus both entries are available or both are broken. In the first case (corresponding
to lines 13-15 in Listing 1.2), the receiver will select the route entry with the shorter
metric. If entry2 is chosen, the value of UpdateSeqNr is set to true because the metric
has changed. If they have the same metric, the receiver arbitrarily chooses one. In our
model, entryl is chosen for convenience. In the second case, the receiver can arbitrarily
choose, and entryl is chosen for convenience. Otherwise, in the case mseq < mseq, the
receiver always selects entry2 instead of entryl. While according to the metrics of two
entries, there also are four possible conditions (corresponding to lines 22-26 in Listing 1.2):
in (1), entry2 is of type Hopcount, so the receiver deals with this available entry. If the
metric changes, the value of UpdateSeqNr is set to true. In (2), entryl is an available
entry but entry?2 is a broken one. So it is a LB. In (3), entryl is a broken entry but entry?2
is an available one. So it is a LA. In (4), entry2 is a broken link, so the receiver adds it
unchanged.

2. If two entries are to different destinations, and md < nd (see lines 27-28 in Listing 1.2).
That means there is no route entry to destination md in the routing information broadcast
by the sender. So the receiver keeps entryl unchanged.

3. Otherwise, if md > nd (see lines 29-34 in Listing 1.2), which means that the route entry
to destination nd (i.e. entry2) is a new route entry for the receiver. Both conditions can
be taken as LAs, even if entry2 in the second condition is a broken link.
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The procedure described above is used for the next route entries in both routing tables.
This procedure is repeated until at least all route entries in one of the routing tables have
been processed. In this case, if some route entries listed in the receiver’s routing table have
not been compared, the receiver will keep them unchanged (see line 4 in Listing 1.2). In line 3
in Listing 1.2, some route entries listed in the sender’s routing table are not in the receiver’s
routing table. In this case, the receiver will add them (i.e. LAs) using function AddRouteEntry()
(see lines 36-41 in Listing 1.2). If all route entries of both routing tables have been processed,
the computation stops and an empty list is returned (see line 2 in Listing 1.2).

3.4 Functions for Broken Link

The functions associated with the transition Broken Link are given in Listing 1.3. Lines 1-6
define the function neighbour(node,i), the guard of transition Broken Link in Fig. 4. It ensures
that a node, node, detects that the link to one neighbour i is down. Function check() (see lines
14-19 in Listing 1.3) describes the metric of each broken link as co (represented as in finity in
functions), and increases the sequence number of such a link by 1 when its next hop is 4. Then,
the updated routing table of this node is returned, and this value is bound to an identifier
Broken in line 10 of the main function BrokenLink(node, i) (see lines 8-12 of Listing 1.3). In
line 11, the node increases its sequence number by function UpdateOwnRT(), and then a node
with its IP address and updated routing table is returned.

Listing 1.3. Function BrokenLink

(*——to ensure a neighbour with IP address i ——x)

fun neighbour ((n,[]),i)= false

| neighbour ((n,(desl,nextl ,metrl,(des2,numl))::rt),i)=

if (i=des1l) andalso (of_hops’Metric(metrl)) andalso (hopnumbers (metrl)=1)
then true

else neighbour ((n,rt),i);

(*—— a node deals with broken links and updates its sequence number—zx)
fun BrokenLink (node,i)=

let val Broken = check(i,GetNodelId (node),GetRTNode (node))

in (GetNodeId (node) ,UpdateOwnRT (GetNodeId (node) ,Broken))

end;

(*—to deal with broken links—x)

fun check(m,n,[]1)=[]

| check(m,n,(des1,nextl,metrl,(des2,numl))::rt)=

if (m=nextl)

then (des1,nextl,infinity,(des2,numi+1))::check(m,n,rt)
else (desl,nextl,metrl,(des2,numl))::check(m,n,rt);

4 Simulation of the CPN Model
In order to provide some insight into the operation of our CPN model, we consider the fol-

lowing simulation of its behaviour. The number of nodes in the MANET is governed by
the initial marking of the CPN model in Fig. 4 (i.e. the marking of place Nodes), and can
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be extended easily. Here, we just consider the operation of the CPN with 3 nodes. Sup-
pose their addresses are represented as 1, 2 and 3 respectively. As shown in Fig. 4, there
are two transitions, Update Table and Broken Link, in the CPN model. In order to explain
the simulation of the CPN explicitly, we describe the occurrence of transition Update Table:
(UpdateTable, < rnode = a,snode = b >), in which rnode and snode are variables in the
arc expression of the input arc to this transition, and a and b are values bound to rnode
and snode respectively. As described in section 3.2, rnode represents a node that can receive
and update its routing table based on the routing information sent by another node, snode.
For example, (UpdateTable, < rnode = 1, snode = 3 >) means that when transition Update
Table occurs, node 1 is bound to rnode and node 3 is bound to snode. Thus, node 1 updates
its routing table based on the routing information it received from node 3. Analogously, the
occurrence of transition Broken Link is depicted as: (BrokenLink, < node = ¢,i = d >), in
which node is the variable in the arc expression of the input arc to this transition, and ¢
is a value assigned to node. Here, node represents a node which detects and deals with the
broken links to a neighbour i, which is ensured by the guard neighbour(node,i). For example,
(BrokenLink,< node = 1,7 = 2 >) means that when transition Broken Link occurs, node 1
is bound to node and 2 is bound to 7. So node 1 detects that it has not received an update
from a former neighbour, node 2, within the expected time, so it makes all route entries
through node 2 as broken links. Now, the steps that occur in a execution of the CPN model
are depicted as follows, and the markings reached are given in Fig. 7.

1) 1¢(1,[(1, 1, hops(0), (1, 0))])++
14(2,[(2, 2, hops(0), (2, 0))])++
14(3,[(3, 3, hops(0), (3, 0))1)
(2) 1¢(1,[(1, 1, hops(0), (1, 0))1)++
14(2,[(2, 2, hops(0), (2, 2)), (3, 3, hops(1), (3, 0))])++
14(3,[(3, 3, hops(0), (3, 0))1)
(3) 1¢(1,[(1, 1, hops(0), (1, 0))])++
1¢(2,[(2, 2, hops(0), (2, 2)), (3, 3, hops(1), (3, 0))1)++
1¢(3,[(1, 1, hops(1), (1, 0)), (3, 3, hops(0), (3, 2))1)
(4) 1¢(1,[(1, 1, hops(0), (1, 0))])++

1¢(2,[(2, 2, hops(0), (2, 4)), (3, 3, infinity, (3, 1))]1)++
1¢(3,[(1, 1, hops(1), (1, 0)), (3, 3, hops(0), (3, 2))1)
(5) 1¢(1,[(1, 1, hops(0), (1, 0))I)++
1¢(2,[(2, 2, hops(0), (2, 4)), (3, 3, infinity, (3, 1))1)++
1¢(3,[(1, 1, infinity, (1, 1)), (3, 3, hops(0), (3, 4))1)
()] 1¢(1,[(1, 3, infinity, (1, 3)), (3, 3, hops(1), (3, 4))1)++
1¢(2,[(2, 2, hops(0), (2, 4)), (3, 3, infinity, (3, 1))]1)++
1¢(3,[(1, 1, infinity, (1, 1)), (3, 3, hops(0), (3, 4))1)
€9 1¢(1,[(1, 3, infinity, (1, 3)), (3, 3, hops(1), (3, 4))1)++
1¢(2,[(2, 2, hops(0), (2, 4)), (3, 3, infinity, (3, 1))1)++
1¢(3,[(1, 1, infinity, (1, 3)), (3, 3, hops(0), (3, 4))1)

Fig. 7. Markings of the CPN during the simulation

The initial marking is given in Fig. 7(1). For example, (1,[(1, 1, hops(0), (1,0))]) is a pair
comprising the identity and routing table of node 1 (see line 13 in Fig. 5). In its routing table,
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there is only one route entry (1,1, hops(0), (1,0)). According to line 11 in Fig. 5, we know the
destination and the next hop both are node 1, the metric is 0, which is of type Hopcount (see
line 7 in Fig. 5), and (1,0) means the sequence number is originated by node 1 and its value
is 0.

(UpdateTable, < rnode = 2, snode = 3 >) occurs, which means node 2 receives the routing
information sent by node 3, [(3, hops(0), (3,0))] (see section 2). Node 2 adds this route entry
to its routing table, after increasing the metric by 1 and adding node 3 as the next hop of
this entry. Because it is a link addition (see Fig. 6), node 2 increments its sequence number
by 2. The marking reached is presented in Fig. 7(2).

After that, (UpdateTable, < rnode = 3, snode = 1 >) occurs, which means node 3 receives
the routing information, [(1,1, hops(0), (1,0))] sent by node 1. Node 3 adds a new entry to
node 1 into its routing table and increases its own sequence number by 2. The marking reached
is shown in Fig. 7(3).

Then (BrokenLink, < node = 2,7 = 3 >) occurs. That means node 2 does not receive any
information from a neighbour, node 3, for a while, so it infers the link to node 3 is broken.
Node 2 assigns in finity as the metric of this route entry and increases the sequence number
of this entry by 1. Because it is a link breakage, node 2 increases its own sequence number by
2. The marking after this step is given in Fig. 7(4).

Next, (BrokenLink, < node = 3,7 = 1 >) occurs. Similarly, node 3 deals with the broken
link to node 1 and increases its own sequence number as well. The marking is shown in
Fig. 7(5).

(UpdateTable, < rnode = 1, snode = 3 >) occurs. Node 1 receives the routing information,
[(1,1,infinity, (1,1)), (3,3, hops(0), (3,4))] sent by node 3. For two route entries to the same
destination, a node always selects the one with the higher sequence number. In this case,
there are two route entries to node 1, one containing the routing information sent by node 3,
and the other kept in the routing table of node 1. Node 1 selects the former one because it
has the higher sequence number, 1. Because a broken link, (1, 1,4n finity, (1,1)), replaces the
available one, (1,1, hops(0),(1,0)), it can be taken as link removal. Node 1 adds the route
entry to node 3 into its routing table, i.e. a link addition. Then node 1 increases its own
sequence number from 1 to 3. The marking reached is shown in Fig. 7(6).

(UpdateTable, < rnode = 3,snode = 1 >) now occurs. Node 3 receives the routing in-
formation, [(1,3,in finity, (1,3)), (3,3, hops(1), (3,4))] sent by node 1. For two route entries
to node 1, node 3 selects the one received, because it has higher sequence number 3. Node 3
keeps the route entry to itself in its routing table unchanged, because the two entries to node
3 have the same sequence number 4. The marking reached is shown in Fig. 7(7).

5 Discussion

The execution sequence described above shows that the CPN model can simulate the up-
dating of routing tables in an environment where the topology of the MANET can change
dramatically. In this section we illustrate how this execution sequence can be related to events
in the MANET, and also analyse the trace by considering the validity of the routing table
entries shown in the markings of Fig. 7.

A scenario in the MANET that relates to the execution sequence in the previous section
is shown in Fig. 8. The dashed circles include the node that is broadcasting and which nodes
receive the broadcast. The solid arrows indicate that the sender broadcasts a full dump, and
the dashed arrows indicate that the sender broadcasts an incremental update. We assume
that nodes broadcast their full dump in the order: node 3, node 1 and node 2. Initially, the
nodes just have their own entries as given by the marking of Fig. 7(1).
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Fig. 8. An illustration of the simulation in section 4

As shown in Fig. 8(a), node 3 broadcasts and node 2 receives and updates its routing
table. The updated routing tables are in Fig. 7(2). Node 2 then broadcasts an incremental
update, but unfortunately no nodes receive it as they are out of range. This is not shown in
Fig. 8. Sometime later (see Fig. 8(b)), node 1 broadcasts and node 3 receives and updates its
routing table. The updated routing tables of the nodes now correspond to Fig. 7(3). Node 3
now broadcasts an incremental update but it is not received (not shown in the Fig.). Later,
as shown in Fig. 8(c), node 2 broadcasts but unfortunately, the other nodes are still too far
away to receive it. Similarly, in Fig. 8(d), node 3 broadcasts, but no other nodes receive it.
Node 2 has not received any information from node 3 for too long, so it declares this link
broken, and immediately broadcasts this route change but no nodes receive it. The updated
routing tables at this time are shown in Fig. 7(4). In Fig. 8(e), node 1 broadcasts to no effect.
Node 3 judges that the link to node 1 is broken, and immediately broadcasts this broken link
in the MANET, but no others receive it. The updated routing tables of the nodes at this
stage are shown in Fig. 7(5). Now node 2 broadcasts again, but to no avail (Fig. 8(f)). Then
node 3 broadcasts and node 1 receives and updates its routing table. The updated routing
tables of the nodes now correspond to the marking in Fig. 7(6).

We find that node 1 has not communicated with the others for a while since Fig. 8(b),
so its sequence number is not updated. Then in Fig. 8(e) node 3 considers that its link to
node 1 is broken, so it increases the sequence number of this link to 1. Therefore, there are
two route entries to node 1, one in routing table of node 1 being (1,1, hops(0), (1,0)), and
the other in routing table of node 3, (1,1,infinity, (1,1)). So node 3 has a higher sequence
number for node 1 than that of node 1 itself. Thus node 1 updates its own routing entry with
an incorrect routing entry from node 3.

The fact that a higher sequence number for a node can occur in a node other than the
node itself leads to incorrect routing entries being created in DSDV. We classify these errors
caused by this fact into two categories as follows.

1. A node updates the route entry to itself based on information from another
node. Intuitively, the metric of the route entry to a node itself is 0 and the next hop is
the node itself. However, in Fig. 7(6), we find a route entry of (1, 3,in finity, (1,3)) in the
routing table of node 1. That means the link from node 1 to itself is broken and should
be via another node, node 3. This is obviously wrong.
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Listing 1.4. Modified function UpdateRT

(*——a node updates its route entries based on another node ——x)
fun UpdateRT (mnid,[]1,n,[]1)= []

UpdateRT (mnid, [],n,rte::rt)=(UpdateSeqNr :=true; AddRouteEntry (mnid,n,rte::rt))

UpdateRT (mnid ,mrte::mrt,n,[])= mrte::mrt
UpdateRT (mnid , (md ,mn ,mm, (md1 ,mseq))::mrt,n,(nd,nn,nm, (ndl,nseq))::rt)=

if md=nd
then
if md=mnid
then (md,mn,mm,(mdl,mseq))::UpdateRT (mnid ,mrt,n,rt)
else
if mseq>nseq
then
if (md=n) andalso (not(of_hops’Metric(mm))) andalso ((of_hops’Metric(nm))
then (UpdateSeqNr :=true;(nd,n,addl(nm),(ndl,nseq))::UpdateRT (mnid ,mrt,n,rt))
else (md,mn,mm,(mdl,mseq))::UpdateRT (mnid ,mrt ,n,rt)
else
if (mseq=nseq)
2. A node cannot update the broken link to another node even on receiving a

broadcast from this node. Now consider that node 3 receives a broadcast from node
1. Node 3 should update the broken link to node 1 based on the route entry sent by
node 1, increase its sequence number, and immediately broadcast this routing change.
Unfortunately, node 3 does not update this broken link at all because of the value of the
sequence number. The route entry sent by node 1 has the sequence number (1,0), whereas
the broken link to node 1 contained in the routing table of node 3 has a higher sequence
number (1,1).

According to DSDV, more recent route entries should have higher sequence numbers in

the routing table. Hence, nodes can distinguish between current and obsolete route entries
by comparing the values of their sequence numbers. For this mechanism to be correct, each
node should keep its own sequence number as the most current one. Unfortunately, DSDV

does not guarantee this point in the general environment of a MANET.

In order to avoid these errors, we modify DSDV by changing the way routing tables are
updated. A correction is made to function UpdateRT() (described in subsection 3.3), and thus
there is no need to alter the structure of the CPN model given in Fig. 4. The modified function

is presented in Listing 1.4 corresponding to lines 1-11 in Listing 1.2.

1. To avoid the first kind of error: a node keeps the route entry to itself unchanged when

updating its routing table, as shown in lines 8-9 in Listing 1.4. It only updates its sequence
number attached in this route entry when needed in function UpdateNode() (see line 7 of
Listing 1.1).

. To avoid the second kind of error: a node receives routing information from another node,

if it already has a route entry to this sender, it will update this route entry regardless of
the value of the sequence number, because the route information it just receives is more
current. This is implemented in lines 13-15 of Listing 1.4: the receiver receives an available
route entry to the sender and updates the broken one to this sender with the new one,
even if the new one has a lower sequence number.
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The rest of the function is identical to that in Listing 1.2, so it is not included in Listing 1.4.
After simulating the modified CPN model, we find that both kinds of errors are eliminated.
For example, given the routing tables of the nodes in Fig. 7(5), if (UpdateTable, < rnode =
1, snode = 3 >) occurs (see section 4), node 1 updates its routing table according to the infor-
mation broadcast by node 3. It keeps the route entry to itself unchanged and adds the route
entry to node 3 as a new one, and updates its sequence number, so its updated routing table is:
[(1,1, hops(0), (1,2)), (3,3, hops(1),(3,4))]. Whereas, if (UpdateT'able, < rnode = 3, snode =
1 >) occurs, node 3 updates its routing table according to the information broadcast by
node 1. Regardless of the value of the sequence number, it updates the broken link to node
1, and updates its sequence number, so its updated routing table is: [(1,1, hops(1),(1,0)),
(3,3, hops(1), (3,4))].

6 Conclusions and Future Work

This paper demonstrates the feasibility of using CPNs to faithfully model routing protocols of
MANETS given their dynamically changing network topologies. We present the first abstract
CPN model for a MANET based on DSDV. Although the model looks deceptively simple, it
not only allows for arbitrary changes in topology but also relaxes the assumption that nodes
have the same transmission ranges. This allows us to model MANETS in which the nodes are
heterogeneous (e.g. a combination of PDAs, notebooks and mobile phones). Our results show
that the CPN model captures the highly dynamic topology of such a network, something
that has been considered a difficult problem by others [29]. Further, although the model is
abstract, it has sufficient detail for us to find errors in the DSDV procedures using simulation.

Two categories of errors have been found. The first is that it is possible for a node to
wrongly update its own route entry, replacing its metric of a hopcount of zero (which must
always be the case) with infinity and directing packets destined for itself to another node.
This is a serious error. The second error is that it is possible for a node with a broken link
entry for another node to not re-establish the link with that node, even though it has received
a broadcast from that node. This is due to incorrect handling of sequence numbers. This is
the first time these errors have been discovered in DSDV as far as we are aware. We also
suggest modifications to the routing table updating procedures to eliminate these errors. Our
simulations have confirmed their effectiveness.

In this paper, we have not attempted to analyse our model using state spaces because the
state space is infinite due to the sequence number being unbounded. This faithfully reflects
the DSDV specification. However, unbounded sequence numbers are impractical, so we plan
to investigate state space analysis of this model when the sequence number space is limited.
Further, we would like to enhance the model in two ways by including: a) the install time
parameter; and b) nodes powering down and rejoining the MANET. More generally, it may
be possible to use the model as a platform to study proactive routing protocols and distance-
vector routing algorithms [20] used in MANETS.
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